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Mixing-layer flows in a saturated porous medium 

By R. A. WOODING 
Applied Mathematics Laboratory, D.S.I.R., Wellington, New Zealand 

(Received 29 July 1963) 

The steady two-dimensional seepage flow by gravitational convection, of a fluid 
of density p, surrounded by a fluid of density po ( =+ p l )  at rest, leads to a potential 
problem from which the shape of the interface can be determined. When the 
two fluids are slightly miscible the interface is replaced by a mixing layer, and it 
is shown that the first-order Prandtl equations for the flow in the layer possess 
an exact similarity solution. The profile across the layer is of the same form as 
the profile of the laminar incompressible half-jet with one fluid at rest, and it 
formula is obtained for the scale of mixing-layer thickness as a function of dis- 
tance downstream. Three examples are discussed. 

(a)  Flow of fluid of density p1 from a horizontal line source. When p1 > po 
a stagnation point exists above the source, and the fluid ultimately descends 
in a vertical column of width proportional to the source strength. At the stagna- 
tion point, the mixing-layer thickness is finite and is proportional to the square 
root of the radius of curvature of the interface. At a sufficiently great distance 
downstream, the thickness increases as the square root of the distance, as in the 
straight laminar half-jet. These results have been tested experimentally in a 
Hele-Shaw cell. 

( b )  Symmetrical flow of an ascending column of fluid (pl  < po) about an ob- 
stacle in the form of a finite horizontal strip. The column reforms after passing 
the obstacle, and the mixing-layer thickness returns to the value corresponding 
to an unobstructed vertical half-jet. The flow has been produced experimentally. 

( c )  Flow in a lens of fresh water overlying salt water, with inflow due to precipi- 
tation, as in a two-dimensional Ghyben-Herzberg lens. Here the potential- 
flow solubion is calculated approximately by means of Dupuit-Forchheimer 
theory. In  the steady-state solution the thickness of the mixing layer between 
fresh and saline water is found to be finite and, as in (a ) ,  proportional to the square 
root of the radius of curvature of the lens. 

1. Introduction 
A recent paper (Wooding 1963, subsequently denoted by I) describes 

steady vertical seepage flows in a saturated porous medium at large Rayleigh 
or Pitclet number when free boundary layers (mixing layers) are present. These 
flows are governed by equations similar to those of laminar incompressible 
flow in such cases as the half-jet (Gortler 1942) and the momentum jet from 
a slit or point source (Schlichting 1933)-a consequence of the linear relationship 
between fluid velocity and net buoyancy in the equations of motion (Darcy’s law). 
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Since pressure terms are neglected in the boundary-layer equations, the vertical 
velocity component can be substituted for density in the equation of mass 
transport, and an equation of quasi-momentum transport results. 

An extension of the above principle to a curved mixing layer is slightly more 
complicated since the layer is not parallel to the buoyancy force; a t  some points 
i t  may be normal to it. However, the steady flow under gravity of a homogeneous 
fluid through a porous medium containing a second fluid at rest involves no special 
difficulty. In  this case externally applied pressure gradients are absent, and a 
point at which the slope of the mixing layer is zero corresponds to a stagnation 
point. The first-order boundary-layer equations are well behaved in the neigh- 
bourhood of such a point, and a similarity solution for the flow in the mixing 
layer is readily found. 

In $2, thefirst-order equations of the mixinglayer are derived, and thesimilarity 
solution is given in $3. The solution for a stagnation-point flow from a horizontal 
line source is given in $ 4, the case of flow past an obstacle in $5, while 3 6 contains 
an approximate treatment of the interaction of ground water and sea water 
in a two-dimensional Ghyben-Herzberg lens. 

2. The mixing-layer equations 
In  defining the co-ordinate systems, it is convenient to refer to figure 1, which 

illustrates part of a steady plane gravity seepage flow of fluid of density p1 below 
a fluid of density po ( < p,) at rest. Curvilinear co-ordinates (x, y) are taken 
with x measured along the ‘interface’ OR separating the two miscible fluids; the 
point 0 is a stagnation point at  which the slope is zero, and at  R the slope-angle is 
designated by a(x). Although a true interface does not exist, OR is determined by 
solving the potential problem which results when mutual diilusivity is neglected. 
For this problem, the Cartesian co-ordinates ( X ,  Y )  are suitable. 

It will be assumed that all variables have been rendered dimensionless in 
terms of parameters defined in relation to the potential flow as follows: 

(i) a length L equal to the radius of curvature at  the stagnation point 0 in 
figure 1, 

(ii) a density difference Ipl-pol (usually Ipl-poI/po < 1); 
(iii) a flow rate u, = (gk/,u) IP1-Pol7 (1) 

equal to the rate of vertical gravity flow of a column of fluid of density p1 sur- 
rounded by a fluid of density po at rest. In  this definition, the permeability k 
is assumed to be a constant, and variations in viscosity ,u are assumed negligible. 

The dimensionless flow vector will be designated by either (u, v), or ( U ,  V )  
depending upon the choice of co-ordinate system, and dimensionless pressure 
and density differences will be defined as 

where P is the actual pressure and gp, L X  is the hydrostatic head a t  the same 
depth in the fluid at  rest. The Rayleigh number 
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is assumed very large. Here the diffusivity K can be taken isotropic and constant 
provided that the flow rate is sufficiently low (cf. I). 

In  terms of the curvilinear co-ordinates (x, y) the equations of continuity, 
motion and mass transport involve coefficients with factors of magnitude 
1 +O(ya’) (Schlichting 1960, p. 111), where the curvature a‘ = da/dx does not 
exceed O( 1). Since y = O(h-4) in the neighbourhood of the mixing layer, the quan- 
tity ya’ can be neglected relative to unity. 

If y and v are replaced by h-iy and h-4v preparatory to taking a Prandtl 
limit, the equations of the flow can be written as 

au av -+- = O(h-i) ,  
8x ay (4) 

where the contributions due to the use of curvilinear co-ordinates have been 
placed on the right-hand sides. Now, from the second equation of motion (6) 
i t  is evident that the total change i n p  across the mixing layer is of order A-4 8 cos a 
and, since p = 0 in the fluid at rest outside the layer, equation ( 5 )  gives 

u = @(sin a + O(h-4 cos a)}. ( 8 )  

After 0 has been eliminated between (7) and (8 ) ,  letting h + co leads to 

( ;x u-+v--q :y c7y2 (2) = o .  
The first-order Prandtl equations (9) and (4) are to be solved subject to the 

boundary conditions 8(x,  00) = 0 and B(z, - co) = 1, i.e. from (8) ,  

u (x ,  co) = 0,  u (x ,  - co) = sin a(x) .  (10a, b )  

3. The similarity solution 
Let the strea,m-function @ defined from (4) in the usual way be written as 

@ = h%)f(r) ,  ( I J a )  

where r = yh-&(z) sina(x). (11b) 

v = -a$/& = Bk-ah’(rf’-f)-hBcc.’~~tcc?lf’, (12b) 

h’(x) = sina(x), (13) 

f f + 2 f  = 0, (14) 

Then u = a@/ay = f’ sin a, (12a) 

and equation (9) reduces to h’f’ + 2j’” sin a = 0. The mixing layer is self-similar if 

and the differential equation becomes 
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which is the well-known profile equation for the laminar incompressible half-jet 
of Gortler (1942). In  the present case the boundary conditions are ~ ‘ ( c o )  = 0,  
f’( -a) = 1, corresponding to the half-jet when one fluid is at  rest. Solutions 
have been given by Chapman (1949), Lessen (1949), Lock (1951) and Crane 
(1957). 

From ( 1  1 b )  and (13), the mixing-layer thickness varies with x as 

where x, is a constant. The right-hand side of (15) is specified from the equation 
a = a(x), which is the intrinsic equation of the interface between the two fluids. 

In terms of the dimensionless Cartesian co-ordinates (X, Y ) ,  equation (15) 
becomes 

where the constant X, can be interpreted as the X co-ordinate of an ideal source 
equivalent to the actual source. Equation (16) reveals that h is a function of 
X - X ,  alone and that, at  any point where the interface between the two fluids 
is vertical, the mixing-layer thickness should be equal to (X - X,)g corresponding 
to a vertical Gortler type of flow. Clearly, this property is a consequence of 
the similarity assumption (13) and may be made the basis of an experimental 
check of its validity. 

A particular illustration of the above effect is noted in flow past an obstacle 
(see $5). Here the mixing-layer thickness downstream of the obstacle apparently 
tends to the value which would hold if the obstacle were not present-a result 
of interest in geothermal applications. 

The remaining sections, $94, 5 and 6 deal with applications of the above 
equations to specific cases. 

4. Stagnation flow from a horizontal line source 
In  figure 1, suppose that the line source S is of strength Q per unit length and 

that the porous medium is effectively of unlimited extent. 
Let 2 = X + i Y ,  and let w = $J + i+ be a dimensionless complex potential of 

scale-unit U,L (see (i) and (iii) of 92); the components of the flow-rate are 
U = aq5/aX = a@/a Y and V = aq5p Y = - a ~ j a X .  Then the equation of motion 

(17 )  
(Darcy’s law) gives 

= 5, 

where p is defined in (2a). The boundary conditions follow from symmetry 
and the fact that OR (in figure 1) is a streamline along which p = 0, and the 
potential-flow solution for the line source is found to be 

w = &log{1-(ez-l)2) 

(Polubarinova-Kochina 1963). The stagnation point O occurs at  a dimen- 
sionless distance of log2 above S, and the fluid ultimately descends in a two- 



Mixing-hyer flows in a saturated porous medium 107 

dimensional column of dimensionless width Q/U,,L = n-. For the interface OR 
the equation is X = - log (cos Y ) ,  giving, for the intrinsic equation, 

x = logtan(++&). (18) 

From (15) and (18), the mixing-layer thickness varies with x as 

halsin a = (log cosh x)*/tanhx, (19) 
the constant x,, being zero since x is measured from 0. 

PO 
0 

x 
FIGURE 1. Plane symmetrical stagnation flow from a horizontal line source S 

for the case pI > po. 

In  the neighbourhood of the stagnation point a t  0, the intrinsic equation (18) 
reduces to a = x + O(x3), while (19) becomes 

h)/sin a = 2-1 + O(x2). (20) 

Thus the mixing-layer thickness tends to a finite limit which, in dimensional 
units, is proportional to LA-*, i.e. to the square root of the radius of curvature at, 
the stagnation point. It may be noted that, if a were of order xs as x -+ 0, the 
mixing-layer thickness would be of order x&(l+). This corresponds to a finite limit 
only when s = 1.  

When x -+ co, (19) gives 

h*/sin a = (x - log 2): { 1 + O(e-2S)) N X1, (21) 

as would be expected from (16). This is equivalent to a vertical Gortler half-jet 
from an ideal source located at the same level as the stagnation point. 

Flow from a two-dimensional source has been reproduced experimentally in a 
Hele-Shaw cell, as described in I and illustrated in figures 2 and 5 of that paper. 
The cell is initially filled with water, and the source fluid is a dilute solution of 
potassium permanganate which forms a descending column, or jet, of finite 
width. 

Relative values of mixing-layer thickness with distance down-stream have 
been obtained from photographic-density measurements. In  figure 2, these 
values are superimposed upon a curve calculated from (19), and indicate quite 
good agreement. The deduction that the mixing layer is of finite thickness a t  the 
stagnation point appears to be confirmed. 
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FIGURE 2 .  Mixing-layer thickness h&/sinu for flow near a stagnation point. ---, 
Calculated from expression (19). Experimental measurements: 0, h = 200; + , = BOO; 
0, h = 1000. 

5. Flow about a two-dimensional obstacle 
A situation of interest in a geothermal application (cf. I) arises when sheets 

of impermeable solidified lava are encountered in the path of moving heated 
ground water. The existence of finite horizontal barriers of this type has been 
established in the geothermal area of Wairakei, New Zealand. 
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FIGURE 3. Potential-flow problem for a horizontal strip placed symmetrically in the 
path of a fluid column ascending under gravity. (a )  The physical 2-plane; (b)  the auxiliary 
5-plane. 

Figure 3 (a )  shows a symmetrical two-dimensional gravity flow about a hori- 
zontal strip CC' for the case when the less dense fluid is in motion. Here AE is 
the axis of symmetry while FGH and F'G'H' indicate the positions of the mixing 
layers. It is assumed that a source of strength Q is located at a sufficiently great 
distance, in the direction of negative X ,  for source effects to be negligible. 
The various dimensionless quantities will be defined as in $4. 

Superficially, there appears to be a lack of uniqueness in the solution for the 
steady potential flow, since the fluid passing the obstacle might either (i) remain 
in two distinct ascending columns, or (ii) recombine to form a single-column 
flow of the same asymptotic width a.s before. However, in the presence of dif- 
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fusion only (ii) is possible in the steady state, as stagnant fluid of a different density 
in the lee of the obstacle is gradually removed by entrainment into the moving 
fluid. Figure 4(a )  to (c), plate 1,  shows three stages of this process in a Hele-Shaw 
cell. 

For the solution of the potential problem, it is convenient to take the region 
ABCDEFGH in figure 3 (a), and to define an equivalent rectangular region in an 
auxiliary c-plane (figure 3 6 ) ,  putting 6 = <+ir. The Zhukovsky potential is 
defined as w = Q+iir = w-z 

= (q5 - X ) + i ( $ -  Y ) ,  ( 2 2 )  

w = w(<), 2 = W(C)-  W(Q. (28) 

and the solution for the potential flow can be written in the parametric form 

For the boundary conditions, $ = 0 and Y? = 0 (Y = 0)  on AB and DE, @ = 0 
and Q = q5 (X = 0) on BCD, and $ = +nand Q = 0 (q5 = X) onFGH. 

tanh w = y sn (2K5/7r, y )  (24)  
The equation 

maps w on to 6 provided that the dimensions of the rectangular region satisfy 
< = 5 +n on DE and AB and 7 = &n-K‘/K on FGH. In  (24) the notation follows 
that of Whittaker & Watson (1950, ch. 22)  with the symbol k replaced by y ;  
sn signifies a Jacobian elliptic function and K ( y )  the complete elliptic integral 
of the first kind, while h” E K(y’) where 7 ’ 2  = 1 - y 2 .  

A convenient representation of W is the Fourier series 
00 

n=O 

cos (2n + 1 )  (5- +in-K’/K) W = - i  c (-)”- ___. ~~ 

(n + +) sinh2 (n + Q) n-K’/R’ (25 )  

valid in the strip - +nK‘/K < 7 < $n-K/K which includes the region of interest. 
It is easily shown that (25) satisfies the condition CD = $ on BCD by expanding 
ZL? in a Fourier series valid in the strip 171 < +n-K’/K. 

in (25)  and, if u = 2K[/n-, an appro- 
priate expansion of (24) is 

zo = tanh-1 (ns u) = 

Upon the interface FGH, 6- gink”/I< = 

m exp(-(n++)n-Kt/K}sin(2n+ l ) [  
-__ +;in. ( 2 6 )  (n + +) sinh (n + 9 )  nK‘/K = logtan(+[+@)+ S ( - ) n  

n=O 

The (X, Y) co-ordinates then follow from (23 ) ,  while the point C(0, a )  is given 
by the formula a = -Im(W(O)}. 

Figure 5 (a) has been plotted for the case a = 2.5, and also shows experimental 
measurements of the position of the flow interface illustrated in figure 4(c). 

For the mixing layer, the formulae (23), (25 )  and ( 2 6 )  serve to evaluate x’ 
and sin a = ( 1  + ( Y’/X’)2}-& in (16 ) .  The thickness scale h*/sin a has been plotted 
in figure 5(b) as a function of X for the parameter values a = 2.5, X, = 10, 
corresponding approximately to the experimental case illustrated in figure 4(c) 
where the mixing-layer thickness was measured on an arbitrary scale. There is 
quite good agreement with the experimental values; in particular, the function 
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h*/sin a is observed to return approximately to the Gortlervalueof ( X  - X,)f after 
passing the obstacle. 

A peculiar feature of figure 4(c), which should be mentioned, is the appearance 
of a thin dark line, surrounding the main flow, after steady-state conditions have 
been established. This arises through the very gradual oxidation of organic 
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impurity in the entrained water. Precipitation of manganese dioxide begins 
when the solubility product (a very small number) is exceeded, which can be 
expected to occur where the concentration of source fluid has attained a certain 
critical value. The distance of the precipitate zone from the main flow has 
been found to be roughly proportional to mixing-layer thickness. 

6. The Ghyben-Herzberg lens 
In  the interaction of ground water and sea water at  a coast, it  is frequently 

observed that a wedge of fresh water overlies saline water inside the permeable 
soil. A particularly well-known example, found underground in some oceanic 
islands, is the Ghyben-Herzberg lens (Wentworth 1947; Childs 1950; Carrier 
1958). Such a system appears capable of maintaining itself indefinitely, and it is 
of interest to consider whether the steady-state mixing-layer theory can represent 
the main features of the flow. This involves the neglect of tidal movement. 
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However, if the Rayleigh number, (3), is large when K is replaced by an appro- 
priate 'effective diffusivity ' (which includes the effect of tidal dispersion), the 
treatment of $92, 3 should remain valid. 

Figure 6 shows a symmetrical two-dimensional flow of fresh water of density 
p,, with stagnation point a t  C, overlying saline water of density po ( > pl) at rest. 
The Y-axis is taken at  sea-level, with coast-lines at  B and D. It is convenient 
here to adopt a length-scale L, equal to OD, but to retain Urn (defined in (1)) as 
the unit of flow-rate. The dimensionless rate of inflow p due to precipitation will 
be assumed constant and uniform. 

FIGURE 6. Idealized two-dimensional Ghyben-Herzberg lens formed by ground water 
overlying saline water. - - - - , Mixing layer; -.-.-.- , free surface of lens. 

The equations of continuity and motion can be written as 

YY = IhH V d X ,  

+/ax+ u = - 1, +lay+ v = 0,  (28) 

where H ( Y )  and h ( Y )  are the S co-ordinates of the mixing layer and free 
surface, and p is defined as in 5 2 with L replaced by L,. The potential-flow problem 
is to be solved subject, to the boundary conditions p = 0 on X = H and 

P = -~Po/~pl-pol on x = h, 

and the condition H = h = 0 at Y = 1. Then an approximate solution, in terms 
of an expansion valid as q + 0, is found to be 

p = H - X + O(qs), 

where q1 = (p,/p,)q % q,  and where p ,  V ,  S and H are O(q4) while U = O(q) .  
The result (29) is usually derived by means of a physical argument known as 
Dupuit-Forchheimer theory (Scheidegger 1957, p. 80). 

At points not far from D in figure 6, H oc (1 - Y)* approximately, which agrees 
with the observation that the depth of the lens is nearly proportional to the one- 
half power of the distance from shore (Carrier 1958). 

The solution (29) can be used to calculate the mixing-layer thickness along the 
curve CD, excluding the neiqhbourhood of the singularity a t  D where the approxi- 
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mate theory breaks down. In place of the boundary condition ( l o b ) ,  expression 
(29) gives u(x ,  -a) = Vsecu = sina:{l +O(u2)} 

which is therefore valid for a: small. 
Now, the formula (15) for the mixing-layer thickness and the definition (3) of 

the Rayleigh number are based upon a length scale L equal to the radius of curva- 
ture at C ;  in terms of the length scale Ll = OD that radius is equal to q-4. It is 
convenient to retain the original length L in defining the variable x in the iii- 
trinsic equation, which is obtained from (29) in the parametric form 

i x/q* = fo17seeadY = Y+&(tanh-lY- Y)+O(q2) .  

Substitution of (30) into (15) gives the dimensionless mixing-layer thickness 
according to first-order theory as 

h+/sin a: = Y-1( 1 - Y2)+ { 1 - ( 1 - Y2)+)4 + ~ ( q ) .  (31) 

This remains finite as q + 0, and tends to the finite limit of 2-4 + O( Y)z in the 
neighbourhood of the stagnation point at C, as in the case of the stagnation 
flow described in 94. Hence the actual mixing-layer thickness varies as the 
square root of the radius of curvature of the Ghyben-Herzberg lens. Expression 
(3  1) also shows that the mixing-layer thickness becomes gradually thinner with 
increasing Y, but fails to represent the thickness accurately as the coast D is 
approached. In  that region it would be necessary to use the exact equations (27) 
and (28) to obtain the potential-flow solution, and to take into account the 
existence of a seepage line a t  the coast itself. 
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